Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Br J Cancer ; 129(10): 1658-1666, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717120

RESUMEN

BACKGROUND: A rapid, low-cost blood test that can be applied to reliably detect multiple different cancer types would be transformational. METHODS: In this large-scale discovery study (n = 2092 patients) we applied the Dxcover® Cancer Liquid Biopsy to examine eight different cancers. The test uses Fourier transform infrared (FTIR) spectroscopy and machine-learning algorithms to detect cancer. RESULTS: Area under the receiver operating characteristic curve (ROC) values were calculated for eight cancer types versus symptomatic non-cancer controls: brain (0.90), breast (0.76), colorectal (0.91), kidney (0.91), lung (0.91), ovarian (0.86), pancreatic (0.84) and prostate (0.86). We assessed the test performance when all eight cancer types were pooled to classify 'any cancer' against non-cancer patients. The cancer versus asymptomatic non-cancer classification detected 64% of Stage I cancers when specificity was 99% (overall sensitivity 57%). When tuned for higher sensitivity, this model identified 99% of Stage I cancers (with specificity 59%). CONCLUSIONS: This spectroscopic blood test can effectively detect early-stage disease and can be fine-tuned to maximise either sensitivity or specificity depending on the requirements from different healthcare systems and cancer diagnostic pathways. This low-cost strategy could facilitate the requisite earlier diagnosis, when cancer treatment can be more effective, or less toxic. STATEMENT OF TRANSLATIONAL RELEVANCE: The earlier diagnosis of cancer is of paramount importance to improve patient survival. Current liquid biopsies are mainly focused on single tumour-derived biomarkers, which limits test sensitivity, especially for early-stage cancers that do not shed enough genetic material. This pan-omic liquid biopsy analyses the full complement of tumour and immune-derived markers present within blood derivatives and could facilitate the earlier detection of multiple cancer types. There is a low barrier to integrating this blood test into existing diagnostic pathways since the technology is rapid, simple to use, only minute sample volumes are required, and sample preparation is minimal. In addition, the spectroscopic liquid biopsy described in this study has the potential to be combined with other orthogonal tests, such as cell-free DNA, which could provide an efficient route to diagnosis. Cancer treatment can be more effective when given earlier, and this low-cost strategy has the potential to improve patient prognosis.


Asunto(s)
Neoplasias de la Próstata , Masculino , Femenino , Humanos , Neoplasias de la Próstata/patología , Curva ROC , Próstata/patología , Biomarcadores de Tumor/genética , Análisis Espectral , Biopsia Líquida
2.
J Exp Clin Cancer Res ; 42(1): 207, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580713

RESUMEN

The advances in cancer research achieved in the last 50 years have been remarkable and have provided a deeper knowledge of this disease in many of its conceptual and biochemical aspects. From viewing a tumor as a 'simple' aggregate of mutant cells and focusing on detecting key cell changes leading to the tumorigenesis, the understanding of cancer has broadened to consider it as a complex organ interacting with its close and far surroundings through tumor and non-tumor cells, metabolic mechanisms, and immune processes. Metabolism and the immune system have been linked to tumorigenesis and malignancy progression along with cancer-specific genetic mutations. However, most technologies developed to overcome the barriers to earlier detection are focused solely on genetic information. The concept of cancer as a complex organ has led to research on other analytical techniques, with the quest of finding a more sensitive and cost-effective comprehensive approach. Furthermore, artificial intelligence has gained broader consensus in the oncology community as a powerful tool with the potential to revolutionize cancer diagnosis for physicians. We herein explore the relevance of the concept of cancer as a complex organ interacting with the bodily surroundings, and focus on promising emerging technologies seeking to diagnose cancer earlier, such as liquid biopsies. We highlight the importance of a comprehensive approach to encompass all the tumor and non-tumor derived information salient to earlier cancer detection.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología , Biopsia Líquida/métodos , Oncología Médica , Carcinogénesis , Biomarcadores de Tumor/metabolismo
3.
J Transl Med ; 21(1): 118, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774504

RESUMEN

Cancer is a worldwide pandemic. The burden it imposes grows steadily on a global scale causing emotional, physical, and financial strains on individuals, families, and health care systems. Despite being the second leading cause of death worldwide, many cancers do not have screening programs and many people with a high risk of developing cancer fail to follow the advised medical screening regime due to the nature of the available screening tests and other challenges with compliance. Moreover, many liquid biopsy strategies being developed for early detection of cancer lack the sensitivity required to detect early-stage cancers. Early detection is key for improved quality of life, survival, and to reduce the financial burden of cancer treatments which are greater at later stage detection. This review examines the current liquid biopsy market, focusing in particular on the strengths and drawbacks of techniques in achieving early cancer detection. We explore the clinical utility of liquid biopsy technologies for the earlier detection of solid cancers, with a focus on how a combination of various spectroscopic and -omic methodologies may pave the way for more efficient cancer diagnostics.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias , Humanos , Detección Precoz del Cáncer/métodos , Calidad de Vida , Neoplasias/diagnóstico , Neoplasias/patología , Biopsia Líquida/métodos , Predicción
4.
Cancers (Basel) ; 14(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35804820

RESUMEN

Pancreatic cancer claims over 460,000 victims per year. The carbohydrate antigen (CA) 19-9 test is the blood test used for pancreatic cancer's detection; however, its levels can be raised in symptomatic patients with other non-malignant diseases, or with other tumors in the surrounding area. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has demonstrated exceptional potential in cancer diagnostics, and its clinical implementation could represent a significant step towards early detection. This proof-of-concept study, investigating the use of ATR-FTIR spectroscopy on dried blood serum, focused on the discrimination of both cancer versus healthy control samples, and cancer versus symptomatic non-malignant control samples, as a novel liquid biopsy approach for pancreatic cancer diagnosis. Machine learning algorithms were applied, achieving results of up to 92% sensitivity and 88% specificity when discriminating between cancers (n = 100) and healthy controls (n = 100). An area under the curve (AUC) of 0.95 was obtained through receiver operating characteristic (ROC) analysis. Balanced sensitivity and specificity over 75%, with an AUC of 0.83, were achieved with cancers (n = 35) versus symptomatic controls (n = 35). Herein, we present these results as demonstration that our liquid biopsy approach could become a simple, minimally invasive, and reliable diagnostic test for pancreatic cancer detection.

5.
Neurooncol Adv ; 4(1): vdac024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35316978

RESUMEN

Background: Diagnostic delays impact the quality of life and survival of patients with brain tumors. Earlier and expeditious diagnoses in these patients are crucial to reduce the morbidities and mortalities associated with brain tumors. A simple, rapid blood test that can be administered easily in a primary care setting to efficiently identify symptomatic patients who are most likely to have a brain tumor would enable quicker referral to brain imaging for those who need it most. Methods: Blood serum samples from 603 patients were prospectively collected and analyzed. Patients either had non-specific symptoms that could be indicative of a brain tumor on presentation to the Emergency Department, or a new brain tumor diagnosis and referral to the neurosurgical unit, NHS Lothian, Scotland. Patient blood serum samples were analyzed using the Dxcover® Brain Cancer liquid biopsy. This technology utilizes infrared spectroscopy combined with a diagnostic algorithm to predict the presence of intracranial disease. Results: Our liquid biopsy approach reported an area under the receiver operating characteristic curve of 0.8. The sensitivity-tuned model achieves a 96% sensitivity with 45% specificity (NPV 99.3%) and identified 100% of glioblastoma multiforme patients. When tuned for a higher specificity, the model yields a sensitivity of 47% with 90% specificity (PPV 28.4%). Conclusions: This simple, non-invasive blood test facilitates the triage and radiographic diagnosis of brain tumor patients while providing reassurance to healthy patients. Minimizing time to diagnosis would facilitate the identification of brain tumor patients at an earlier stage, enabling more effective, less morbid surgical and adjuvant care.

6.
Appl Spectrosc ; 76(4): 393-415, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34041957

RESUMEN

This Focal Point Review paper discusses the developments of biomedical Raman and infrared spectroscopy, and the recent strive towards these technologies being regarded as reliable clinical tools. The promise of vibrational spectroscopy in the field of biomedical science, alongside the development of computational methods for spectral analysis, has driven a plethora of proof-of-concept studies which convey the potential of various spectroscopic approaches. Here we report a brief review of the literature published over the past few decades, with a focus on the current technical, clinical, and economic barriers to translation, namely the limitations of many of the early studies, and the lack of understanding of clinical pathways, health technology assessments, regulatory approval, clinical feasibility, and funding applications. The field of biomedical vibrational spectroscopy must acknowledge and overcome these hurdles in order to achieve clinical efficacy. Current prospects have been overviewed with comment on the advised future direction of spectroscopic technologies, with the aspiration that many of these innovative approaches can ultimately reach the frontier of medical diagnostics and many clinical applications.


Asunto(s)
Espectrometría Raman , Vibración , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos
8.
Int J Technol Assess Health Care ; 37: e41, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33622443

RESUMEN

OBJECTIVES: An early economic evaluation to inform the translation into clinical practice of a spectroscopic liquid biopsy for the detection of brain cancer. Two specific aims are (1) to update an existing economic model with results from a prospective study of diagnostic accuracy and (2) to explore the potential of brain tumor-type predictions to affect patient outcomes and healthcare costs. METHODS: A cost-effectiveness analysis from a UK NHS perspective of the use of spectroscopic liquid biopsy in primary and secondary care settings, as well as a cost-consequence analysis of the addition of tumor-type predictions was conducted. Decision tree models were constructed to represent simplified diagnostic pathways. Test diagnostic accuracy parameters were based on a prospective validation study. Four price points (GBP 50-200, EUR 57-228) for the test were considered. RESULTS: In both settings, the use of liquid biopsy produced QALY gains. In primary care, at test costs below GBP 100 (EUR 114), testing was cost saving. At GBP 100 (EUR 114) per test, the ICER was GBP 13,279 (EUR 15,145), whereas at GBP 200 (EUR 228), the ICER was GBP 78,300 (EUR 89,301). In secondary care, the ICER ranged from GBP 11,360 (EUR 12,956) to GBP 43,870 (EUR 50,034) across the range of test costs. CONCLUSIONS: The results demonstrate the potential for the technology to be cost-effective in both primary and secondary care settings. Additional studies of test use in routine primary care practice are needed to resolve the remaining issues of uncertainty-prevalence in this patient population and referral behavior.


Asunto(s)
Neoplasias Encefálicas , Modelos Económicos , Neoplasias Encefálicas/diagnóstico , Análisis Costo-Beneficio , Humanos , Biopsia Líquida , Estudios Prospectivos
9.
Cancers (Basel) ; 12(12)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302429

RESUMEN

Mutations in the isocitrate dehydrogenase 1 (IDH1) gene are found in a high proportion of diffuse gliomas. The presence of the IDH1 mutation is a valuable diagnostic, prognostic and predictive biomarker for the management of patients with glial tumours. Techniques involving vibrational spectroscopy, e.g., Fourier transform infrared (FTIR) spectroscopy, have previously demonstrated analytical capabilities for cancer detection, and have the potential to contribute to diagnostics. The implementation of FTIR microspectroscopy during surgical biopsy could present a fast, label-free method for molecular genetic classification. For example, the rapid determination of IDH1 status in a patient with a glioma diagnosis could inform intra-operative decision-making between alternative surgical strategies. In this study, we utilized synchrotron-based FTIR microanalysis to probe tissue microarray sections from 79 glioma patients, and distinguished the positive class (IDH1-mutated) from the IDH1-wildtype glioma, with a sensitivity and specificity of 82.4% and 83.4%, respectively. We also examined the ability of attenuated total reflection (ATR)-FTIR spectroscopy in detecting the biomolecular events and global epigenetic and metabolic changes associated with mutations in the IDH1 enzyme, in blood serum samples collected from an additional 72 brain tumour patients. Centrifugal filtration enhanced the diagnostic ability of the classification models, with balanced accuracies up to ~69%. Identification of the molecular status from blood serum prior to biopsy could further direct some patients to alternative treatment strategies.

10.
Cancers (Basel) ; 12(7)2020 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-32605100

RESUMEN

Patients living with brain tumours have the highest average years of life lost of any cancer, ultimately reducing average life expectancy by 20 years. Diagnosis depends on brain imaging and most often confirmatory tissue biopsy for histology. The majority of patients experience non-specific symptoms, such as headache, and may be reviewed in primary care on multiple occasions before diagnosis is made. Sixty-two per cent of patients are diagnosed on brain imaging performed when they deteriorate and present to the emergency department. Histological diagnosis from invasive surgical biopsy is necessary prior to definitive treatment, because imaging techniques alone have difficulty in distinguishing between several types of brain cancer. However, surgery itself does not necessarily control tumour growth, and risks morbidity for the patient. Due to their similar features on brain scans, glioblastoma, primary central nervous system lymphoma and brain metastases have been known to cause radiological confusion. Non-invasive tests that support stratification of tumour subtype would enhance early personalisation of treatment selection and reduce the delay and risks associated with surgery for many patients. Techniques involving vibrational spectroscopy, such as attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, have previously demonstrated analytical capabilities for cancer diagnostics. In this study, infrared spectra from 641 blood serum samples obtained from brain cancer and control patients have been collected. Firstly, we highlight the capability of ATR-FTIR to distinguish between healthy controls and brain cancer at sensitivities and specificities above 90%, before defining subtle differences in protein secondary structures between patient groups through Amide I deconvolution. We successfully differentiate several types of brain lesions (glioblastoma, meningioma, primary central nervous system lymphoma and metastasis) with balanced accuracies >80%. A reliable blood serum test capable of stratifying brain tumours in secondary care could potentially avoid surgery and speed up the time to definitive therapy, which would be of great value for both neurologists and patients.

11.
Cancer Lett ; 477: 122-130, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32112901

RESUMEN

Fourier Transform Infrared Spectroscopy (FTIR) has been largely employed by scientific researchers to improve diagnosis and treatment of cancer, using various biofluids and tissues. The technology has proved to be easy to use, rapid and cost-effective for analysis on human blood serum to discriminate between cancer versus healthy control samples. The high sensitivity and specificity achievable during samples classification aided by machine learning algorithms, offers an opportunity to transform cancer referral pathways, as it has been demonstrated in a unique and recent prospective clinical validation study on brain tumours. We herein highlight the importance of early detection in cancer research using FTIR, discussing the technique, the suitability of serum for analysis and previous studies, with special focus on pre-clinical factors and clinical translation requirements and development.


Asunto(s)
Líquidos Corporales/química , Neoplasias/diagnóstico , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Algoritmos , Recolección de Muestras de Sangre , Neoplasias Encefálicas/diagnóstico , Ensayos Clínicos como Asunto , Humanos , Aprendizaje Automático , Sensibilidad y Especificidad
12.
Nat Commun ; 10(1): 4501, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594931

RESUMEN

Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this patient pathway. A blood test using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy for the detection of brain cancer, alongside machine learning technology, is advancing towards clinical translation. However, whilst the methodology is simple and does not require extensive sample preparation, the throughput of such an approach is limited. Here we describe the development of instrumentation for the analysis of serum that is able to differentiate cancer and control patients at a sensitivity and specificity of 93.2% and 92.8%. Furthermore, preliminary data from the first prospective clinical validation study of its kind are presented, demonstrating how this innovative technology can triage patients and allow rapid access to imaging.


Asunto(s)
Análisis Químico de la Sangre/métodos , Neoplasias Encefálicas/diagnóstico , Triaje/métodos , Adulto , Anciano , Biopsia , Análisis Químico de la Sangre/economía , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/patología , Análisis Costo-Beneficio , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , Sensibilidad y Especificidad , Espectroscopía Infrarroja por Transformada de Fourier/economía , Factores de Tiempo , Triaje/economía , Adulto Joven
13.
Analyst ; 144(22): 6736-6750, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31612875

RESUMEN

Over a third of brain tumour patients visit their general practitioner more than five times prior to diagnosis in the UK, leading to 62% of patients being diagnosed as emergency presentations. Unfortunately, symptoms are non-specific to brain tumours, and the majority of these patients complain of headaches on multiple occasions before being referred to a neurologist. As there are currently no methods in place for the early detection of brain cancer, the affected patients' average life expectancy is reduced by 20 years. These statistics indicate that the current pathway is ineffective, and there is a vast need for a rapid diagnostic test. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy is sensitive to the hallmarks of cancer, as it analyses the full range of macromolecular classes. The combination of serum spectroscopy and advanced data analysis has previously been shown to rapidly and objectively distinguish brain tumour severity. Recently, a novel high-throughput ATR accessory has been developed, which could be cost-effective to the National Health Service in the UK, and valuable for clinical translation. In this study, 765 blood serum samples have been collected from healthy controls and patients diagnosed with various types of brain cancer, contributing to one of the largest spectroscopic studies to date. Three robust machine learning techniques - random forest, partial least squares-discriminant analysis and support vector machine - have all provided promising results. The novel high-throughput technology has been validated by separating brain cancer and non-cancer with balanced accuracies of 90% which is comparable to the traditional fixed diamond crystal methodology. Furthermore, the differentiation of brain tumour type could be useful for neurologists, as some are difficult to distinguish through medical imaging alone. For example, the highly aggressive glioblastoma multiforme and primary cerebral lymphoma can appear similar on magnetic resonance imaging (MRI) scans, thus are often misdiagnosed. Here, we report the ability of infrared spectroscopy to distinguish between glioblastoma and lymphoma patients, at a sensitivity and specificity of 90.1% and 86.3%, respectively. A reliable serum diagnostic test could avoid the need for surgery and speed up time to definitive chemotherapy and radiotherapy.


Asunto(s)
Análisis Químico de la Sangre/estadística & datos numéricos , Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Linfoma/diagnóstico , Espectroscopía Infrarroja por Transformada de Fourier/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Conjuntos de Datos como Asunto , Diagnóstico Diferencial , Análisis Discriminante , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , Sensibilidad y Especificidad , Máquina de Vectores de Soporte , Adulto Joven
14.
J Biophotonics ; 11(4): e201700299, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29377638

RESUMEN

The complex patterns observed from evaporated liquid drops have been examined extensively over the last 20 years. Complete understanding of drop deposition is vital in many medical processes, and one which is essential to the translation of biofluid spectroscopic disease diagnostics. The promising use of spectroscopy in disease diagnosis has been hindered by the complicated patterns left by dried biological fluids which may inhibit the clinical translation of this technology. Coffee-ring formation, cracking and gelation patterns have all been observed in biofluid drops, and with surface homogeneity being a key element to many spectroscopic techniques, experimental issues have been found to arise. A better understanding of the fundamental processes involved in a drying droplet could allow efficient progression in this research field, and ultimately benefit the population with the development of a reliable cancer diagnostic.


Asunto(s)
Líquidos Corporales/química , Técnicas y Procedimientos Diagnósticos , Manejo de Especímenes , Análisis Espectral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...